Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Tissue Eng Regen Med ; 12(3): e1623-e1635, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29024475

RESUMO

The development of an alternative source for donor lungs would change the paradigm of lung transplantation. Recent studies have demonstrated the potential feasibility of using decellularized lungs as scaffolds for lung tissue regeneration and subsequent implantation. However, finding a reliable cell source and the ability to scale up for recellularization of the lung scaffold still remain significant challenges. To explore the possibility of regeneration of human lung tissue from stem cells in vitro, populations of lung progenitor cells were generated from human iPSCs. To explore the feasibility of producing engineered lungs from stem cells, we repopulated decellularized human lung and rat lungs with iPSC-derived epithelial progenitor cells. The iPSCs-derived epithelial progenitor cells lined the decellularized human lung and expressed most of the epithelial markers when were cultured in a lung bioreactor system. In decellularized rat lungs, these human-derived cells attach and proliferate in a manner similar to what was observed in the decellularized human lung. Our results suggest that repopulation of lung matrix with iPSC-derived lung epithelial cells may be a viable strategy for human lung regeneration and represents an important early step toward translation of this technology.


Assuntos
Bioengenharia/métodos , Células Epiteliais/citologia , Matriz Extracelular/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Pulmão/fisiologia , Animais , Biomarcadores/metabolismo , Linhagem Celular , Proliferação de Células , Células Cultivadas , Endoderma/citologia , Células Endoteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microvasos/citologia , Ratos Sprague-Dawley , Alicerces Teciduais/química
2.
ACS Biomater Sci Eng ; 3(9): 2000-2010, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440555

RESUMO

To date, efforts to generate engineered lung tissue capable of long-term function have been limited by incomplete barrier formation between air and blood and by thrombosis of the microvasculature upon exposure of blood to the collagens within the decellularized scaffold. Improved barrier function and resistance to thrombosis both depend upon the recapitulation of a confluent monolayer of functional endothelium throughout the pulmonary vasculature. This manuscript describes novel strategies to increase cell coverage of the vascular surface area, compared to previous reports in our lab and others, and reports robust production of multiple anticoagulant substances that will be key to long-term function in vivo once additional strides are made in improving barrier function. Rat lung microvascular endothelial cells were seeded into decellularized rat lungs by both the pulmonary artery and veins with the use of low-concentration cell suspensions, pulsatile, gravity-driven flow, and supraphysiological vascular pressures. Together, these strategies yielded 72.44 ± 10.52% endothelial cell nuclear coverage of the acellular matrix after 3-4 d of biomimetic bioreactor culture compared to that of the native rat lung. Immunofluorescence, Western blot, and PCR analysis of these lungs indicated robust expression of phenotypic markers such as CD31 and VE-Cadherin after time in culture. Endothelial-seeded lungs had CD31 gene expression of 0.074 ± 0.015 vs 0.021 ± 0.0023 for native lungs, p = 0.025, and VE-Cadherin gene expression of 0.93 ± 0.22 compared to that of the native lung at 0.13 ± 0.02, p = 0.023. Precursors to antithrombotic substances such as tissue plasminogen activator, prostacyclin synthase, and endothelial nitric oxide synthase were expressed at levels equal to or greater than those of the native lung. Engineered lungs reseeded with endothelial cells were implanted orthotopically and contained patent microvascular networks that had gas exchange function during mechanical ventilation on 100% O2 greater than that of decelluarized lungs. Taken together, these data suggest that these engineered constructs could be compatible with long-term function in vivo when utilized in future studies in tandem with improved barrier function.

3.
Am J Physiol Lung Cell Mol Physiol ; 311(6): L1213-L1221, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815261

RESUMO

Hypoxic pulmonary vasoconstriction (HPV) is the response of the pulmonary vasculature to low levels of alveolar oxygen. HPV improves systemic arterial oxygenation by matching pulmonary perfusion to ventilation during alveolar hypoxia and is impaired in lung diseases such as the acute respiratory distress syndrome (ARDS) and in experimental models of endotoxemia. Epoxyeicosatrienoic acids (EETs) are pulmonary vasoconstrictors, which are metabolized to less vasoactive dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (sEH). We hypothesized that pharmacological inhibition or a congenital deficiency of sEH in mice would reduce the metabolism of EETs and enhance HPV in mice after challenge with lipopolysaccharide (LPS). HPV was assessed 22 h after intravenous injection of LPS by measuring the percentage increase in the pulmonary vascular resistance of the left lung induced by left mainstem bronchial occlusion (LMBO). After LPS challenge, HPV was impaired in sEH+/+, but not in sEH-/- mice or in sEH+/+ mice treated acutely with a sEH inhibitor. Deficiency or pharmacological inhibition of sEH protected mice from the LPS-induced decrease in systemic arterial oxygen concentration (PaO2 ) during LMBO. In the lungs of sEH-/- mice, the LPS-induced increase in DHETs and cytokines was attenuated. Deficiency or pharmacological inhibition of sEH protects mice from LPS-induced impairment of HPV and improves the PaO2 after LMBO. After LPS challenge, lung EET degradation and cytokine expression were reduced in sEH-/- mice. Inhibition of sEH might prove to be an effective treatment for ventilation-perfusion mismatch in lung diseases such as ARDS.


Assuntos
Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/deficiência , Hipóxia/enzimologia , Hipóxia/fisiopatologia , Artéria Pulmonar/enzimologia , Artéria Pulmonar/fisiopatologia , Vasoconstrição , Animais , Ácido Araquidônico/metabolismo , Gasometria , Citocinas/genética , Citocinas/metabolismo , Epóxido Hidrolases/metabolismo , Hemodinâmica , Hipóxia/complicações , Lipopolissacarídeos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Oxigênio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solubilidade
4.
Anesthesiology ; 125(5): 952-963, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27517645

RESUMO

BACKGROUND: Transfusion of packed erythrocytes stored for a long duration is associated with increased pulmonary arterial pressure and vascular resistance. Prolonged storage decreases erythrocyte deformability, and older erythrocytes are rapidly removed from the circulation after transfusion. The authors studied whether treating stored packed ovine erythrocytes with NO before transfusion could prevent pulmonary vasoconstriction, enhance erythrocyte deformability, and prolong erythrocyte survival after transfusion. METHODS: Ovine leukoreduced packed erythrocytes were treated before transfusion with either NO gas or a short-lived NO donor. Sheep were transfused with autologous packed erythrocytes, which were stored at 4°C for either 2 ("fresh blood") or 40 days ("stored blood"). Pulmonary and systemic hemodynamic parameters were monitored before, during, and after transfusion. Transfused erythrocytes were labeled with biotin to measure their circulating lifespan. Erythrocyte deformability was assessed before and after NO treatment using a microfluidic device. RESULTS: NO treatment improved the deformability of stored erythrocytes and increased the number of stored erythrocytes circulating at 1 and 24 h after transfusion. NO treatment prevented transfusion-associated pulmonary hypertension (mean pulmonary arterial pressure at 30 min of 21 ± 1 vs. 15 ± 1 mmHg in control and NO-treated packed erythrocytes, P < 0.0001). Washing stored packed erythrocytes before transfusion did not prevent pulmonary hypertension. CONCLUSIONS: NO treatment of stored packed erythrocytes before transfusion oxidizes cell-free oxyhemoglobin to methemoglobin, prevents subsequent NO scavenging in the pulmonary vasculature, and limits pulmonary hypertension. NO treatment increases erythrocyte deformability and erythrocyte survival after transfusion. NO treatment might provide a promising therapeutic approach to prevent pulmonary hypertension and extend erythrocyte survival.


Assuntos
Transfusão de Eritrócitos/métodos , Eritrócitos/efeitos dos fármacos , Hipertensão Pulmonar/prevenção & controle , Óxido Nítrico , Animais , Modelos Animais de Doenças , Ovinos , Fatores de Tempo
5.
Tissue Eng Part A ; 22(17-18): 1086-97, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27520928

RESUMO

Here we report the creation of a novel tracheal construct in the form of an engineered, acellular tissue-stent biocomposite trachea (TSBT). Allogeneic or xenogeneic smooth muscle cells are cultured on polyglycolic acid polymer-metal stent scaffold leading to the formation of a tissue comprising cells, their deposited collagenous matrix, and the stent material. Thorough decellularization then produces a final acellular tubular construct. Engineered TSBTs were tested as end-to-end tracheal replacements in 11 rats and 3 nonhuman primates. Over a period of 8 weeks, no instances of airway perforation, infection, stent migration, or erosion were observed. Histological analyses reveal that the patent implants remodel adaptively with native host cells, including formation of connective tissue in the tracheal wall and formation of a confluent, columnar epithelium in the graft lumen, although some instances of airway stenosis were observed. Overall, TSBTs resisted collapse and compression that often limit the function of other decellularized tracheal replacements, and additionally do not require any cells from the intended recipient. Such engineered TSBTs represent a model for future efforts in tracheal regeneration.


Assuntos
Bioprótese , Teste de Materiais , Stents , Engenharia Tecidual , Alicerces Teciduais/química , Traqueia , Animais , Bovinos , Chlorocebus aethiops , Humanos , Ratos
6.
J Am Coll Cardiol ; 67(2): 174-189, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26791065

RESUMO

BACKGROUND: Pulmonary hypertension and associated right ventricular (RV) dysfunction are important determinants of morbidity and mortality, which are optimally characterized by invasive hemodynamic measurements. OBJECTIVES: This study sought to determine whether metabolite profiling could identify plasma signatures of right ventricular-pulmonary vascular (RV-PV) dysfunction. METHODS: We measured plasma concentrations of 105 metabolites using targeted mass spectrometry in 71 individuals (discovery cohort) who underwent comprehensive physiological assessment with right-sided heart catheterization and radionuclide ventriculography at rest and during exercise. Our findings were validated in a second cohort undergoing invasive hemodynamic evaluations (n = 71), as well as in an independent cohort with or without known pulmonary arterial (PA) hypertension (n = 30). RESULTS: In the discovery cohort, 21 metabolites were associated with 2 or more hemodynamic indicators of RV-PV function (i.e., resting right atrial pressure, mean PA pressure, pulmonary vascular resistance [PVR], and PVR and PA pressure-flow response [ΔPQ] during exercise). We identified novel associations of RV-PV dysfunction with circulating indoleamine 2,3-dioxygenase (IDO)-dependent tryptophan metabolites (TMs), tricarboxylic acid intermediates, and purine metabolites and confirmed previously described associations with arginine-nitric oxide metabolic pathway constituents. IDO-TM levels were inversely related to RV ejection fraction and were particularly well correlated with exercise PVR and ΔPQ. Multisite sampling demonstrated transpulmonary release of IDO-TMs. IDO-TMs also identified RV-PV dysfunction in a validation cohort with known risk factors for pulmonary hypertension and in patients with established PA hypertension. CONCLUSIONS: Metabolic profiling identified reproducible signatures of RV-PV dysfunction, highlighting both new biomarkers and pathways for further functional characterization.


Assuntos
Arginina/metabolismo , Hipertensão Pulmonar , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Óxido Nítrico/metabolismo , Purinas/metabolismo , Ácidos Tricarboxílicos/metabolismo , Disfunção Ventricular Direita , Adulto , Idoso , Animais , Pressão Arterial/fisiologia , Biomarcadores/sangue , Feminino , Humanos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Circulação Pulmonar/fisiologia , Reprodutibilidade dos Testes , Estatística como Assunto , Resistência Vascular/fisiologia , Disfunção Ventricular Direita/diagnóstico , Disfunção Ventricular Direita/metabolismo
7.
Am J Respir Cell Mol Biol ; 52(5): 563-70, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25233285

RESUMO

Cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids contribute to the regulation of pulmonary vascular tone and hypoxic pulmonary vasoconstriction. We investigated whether the attenuated acute vasoconstrictor response to hypoxic exposure of Cyp2j(-/-) mice would protect these mice against the pulmonary vascular remodeling and hypertension associated with prolonged exposure to hypoxia. Cyp2j(-/-) and Cyp2j(+/+) male and female mice continuously breathed an inspired oxygen fraction of 0.21 (normoxia) or 0.10 (hypoxia) in a normobaric chamber for 6 weeks. We assessed hemoglobin (Hb) concentrations, right ventricular (RV) systolic pressure (RVSP), and transthoracic echocardiographic parameters (pulmonary acceleration time [PAT] and RV wall thickness). Pulmonary Cyp2c29, Cyp2c38, and sEH mRNA levels were measured in Cyp2j(-/-) and Cyp2j(+/+) male mice. At baseline, Cyp2j(-/-) and Cyp2j(+/+) mice had similar Hb levels and RVSP while breathing air. After 6 weeks of hypoxia, circulating Hb concentrations increased but did not differ between Cyp2j(-/-) and Cyp2j(+/+) mice. Chronic hypoxia increased RVSP in Cyp2j(-/-) and Cyp2j(+/+) mice of either gender. Exposure to chronic hypoxia decreased PAT and increased RV wall thickness in both genotypes and genders to a similar extent. Prolonged exposure to hypoxia produced similar levels of RV hypertrophy in both genotypes of either gender. Pulmonary Cyp2c29, Cyp2c38, and sEH mRNA levels did not differ between Cyp2j(-/-) and Cyp2j(+/+) male mice after breathing at normoxia or hypoxia for 6 weeks. These results suggest that murine Cyp2j deficiency does not attenuate the development of murine pulmonary vascular remodeling and hypertension associated with prolonged exposure to hypoxia in mice of both genders.


Assuntos
Sistema Enzimático do Citocromo P-450/deficiência , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Animais , Pressão Arterial , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Família 2 do Citocromo P450 , Modelos Animais de Doenças , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica , Genótipo , Hemoglobinas/metabolismo , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/enzimologia , Hipertrofia Ventricular Direita/etiologia , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Artéria Pulmonar/enzimologia , Artéria Pulmonar/fisiopatologia , RNA Mensageiro/metabolismo , Fatores de Tempo , Remodelação Vascular
8.
PLoS Genet ; 9(11): e1003950, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24278032

RESUMO

Epoxyeicosatrienoic acids (EETs) confer vasoactive and cardioprotective functions. Genetic analysis of the contributions of these short-lived mediators to pathophysiology has been confounded to date by the allelic expansion in rodents of the portion of the genome syntenic to human CYP2J2, a gene encoding one of the principle cytochrome P450 epoxygenases responsible for the formation of EETs in humans. Mice have eight potentially functional genes that could direct the synthesis of epoxygenases with properties similar to those of CYP2J2. As an initial step towards understanding the role of the murine Cyp2j locus, we have created mice bearing a 626-kb deletion spanning the entire region syntenic to CYP2J2, using a combination of homologous and site-directed recombination strategies. A mouse strain in which the locus deletion was complemented by transgenic delivery of BAC sequences encoding human CYP2J2 was also created. Systemic and pulmonary hemodynamic measurements did not differ in wild-type, null, and complemented mice at baseline. However, hypoxic pulmonary vasoconstriction (HPV) during left mainstem bronchus occlusion was impaired and associated with reduced systemic oxygenation in null mice, but not in null mice bearing the human transgene. Administration of an epoxygenase inhibitor to wild-type mice also impaired HPV. These findings demonstrate that Cyp2j gene products regulate the pulmonary vascular response to hypoxia.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Hipóxia/patologia , Pulmão/patologia , Vasoconstrição/genética , Animais , Animais Geneticamente Modificados , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450/metabolismo , Recombinação Homóloga , Humanos , Hipóxia/genética , Pulmão/metabolismo , Camundongos , Oxirredução , Deleção de Sequência
9.
Crit Care Med ; 41(11): 2492-501, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23887236

RESUMO

OBJECTIVES: Transfusion of stored RBCs is associated with increased morbidity and mortality in trauma patients. Plasma hemoglobin scavenges nitric oxide, which can cause vasoconstriction, induce inflammation, and activate platelets. We hypothesized that transfusion of RBCs stored for prolonged periods would induce adverse effects (pulmonary vasoconstriction, tissue injury, inflammation, and platelet activation) in lambs subjected to severe hemorrhagic shock and that concurrent inhalation of nitric oxide would prevent these adverse effects. DESIGN: Animal study. SETTING: Research laboratory at the Massachusetts General Hospital, Boston, MA. SUBJECTS: Seventeen awake Polypay-breed lambs. INTERVENTIONS: Lambs were subjected to 2 hours of hemorrhagic shock by acutely withdrawing 50% of their blood volume. Lambs were resuscitated with autologous RBCs stored for 2 hours or less (fresh) or 39 ± 2 (mean ± SD) days (stored). Stored RBCs were administered with or without breathing nitric oxide (80 ppm) during resuscitation and for 21 hours thereafter. MEASUREMENTS AND MAIN RESULTS: We measured hemodynamic and oxygenation variables, markers of tissue injury and inflammation, plasma hemoglobin concentrations, and platelet activation. Peak pulmonary arterial pressure was higher after resuscitation with stored than with fresh RBCs (24 ± 4 vs 14 ± 2 mm Hg, p < 0.001) and correlated with peak plasma hemoglobin concentrations (R = 0.56, p = 0.003). At 21 hours after resuscitation, pulmonary myeloperoxidase activity was higher in lambs resuscitated with stored than with fresh RBCs (11 ± 2 vs 4 ± 1 U/g, p = 0.007). Furthermore, transfusion of stored RBCs increased plasma markers of tissue injury and sensitized platelets to adenosine diphosphate activation. Breathing nitric oxide prevented the pulmonary hypertension and attenuated the pulmonary myeloperoxidase activity, as well as tissue injury and sensitization of platelets to adenosine diphosphate. CONCLUSIONS: Our data suggest that resuscitation of lambs from hemorrhagic shock with autologous stored RBCs induces pulmonary hypertension and inflammation, which can be ameliorated by breathing nitric oxide.


Assuntos
Transfusão de Eritrócitos/métodos , Óxido Nítrico/uso terapêutico , Ressuscitação/métodos , Choque Hemorrágico/fisiopatologia , Choque Hemorrágico/terapia , Animais , Transfusão de Eritrócitos/efeitos adversos , Expressão Gênica , Hemodinâmica , Hipertensão Pulmonar/etiologia , Pulmão/metabolismo , Neutrófilos/metabolismo , Óxido Nítrico/efeitos adversos , Peroxidase/metabolismo , Carneiro Doméstico
10.
Nitric Oxide ; 30: 1-8, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23313572

RESUMO

Plasma hemoglobin (Hb) scavenges endothelium-derived nitric oxide (NO), producing systemic and pulmonary vasoconstriction in many species. We hypothesized that i.v. administration of murine cell-free Hb would produce pulmonary vasoconstriction and enhance hypoxic pulmonary vasoconstriction (HPV) in mice. To assess the impact of plasma Hb on basal pulmonary vascular tone in anesthetized mice we measured left lung pulmonary vascular resistance (LPVRI) before and after infusion of Hb at thoracotomy. To confirm the findings obtained at thoracotomy, measurements of right ventricular systolic pressure (RVSP) and systemic arterial pressure (SAP) were obtained in closed-chest wild-type mice. To elucidate whether pretreatment with Hb augments HPV we assessed the increase in LPVRI before and during regional lung hypoxia produced by left mainstem bronchial occlusion (LMBO) in wild-type mice pretreated with Hb. Infusion of Hb increased SAP but did not change pulmonary arterial pressure (PAP), left lung pulmonary arterial flow (QLPA) or LPVRI in either wild-type or diabetic mice with endothelial dysfunction. Scavenging of NO by plasma Hb did not alter HPV in wild-type mice. Inhibition of NO synthase with l-NAME did not change the basal LPVRI, but augmented HPV during LMBO. Our data suggest that scavenging of NO by plasma Hb does not alter pulmonary vascular tone in mice. Therefore, generation of NO in the pulmonary circulation is unlikely to be responsible for the low basal pulmonary vascular tone of mice.


Assuntos
Hemoglobinas/administração & dosagem , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Resistência Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Análise de Variância , Animais , Pressão Sanguínea/efeitos dos fármacos , Diabetes Mellitus Experimental , Hipóxia , Pulmão/química , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Superóxidos/metabolismo , Toracotomia , Vasoconstritores/farmacologia
11.
Anesthesiology ; 117(6): 1190-202, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23168426

RESUMO

BACKGROUND: The authors investigated whether transfusion with stored erythrocytes would increase tissue injury, inflammation, oxidative stress, and mortality (adverse effects of transfusing stored erythrocytes) in a murine model of hemorrhagic shock. They tested whether the adverse effects associated with transfusing stored erythrocytes were exacerbated by endothelial dysfunction and ameliorated by inhaling nitric oxide. METHODS: The authors studied mice fed a high-fat diet (HFD-fed; to induce endothelial dysfunction) or a standard diet for 4-6 weeks. Mice were subjected to 90 min of hemorrhagic shock, followed by resuscitation with leukoreduced syngeneic erythrocytes stored less than 24 h (fresh erythrocytes) or stored for 2 weeks (stored erythrocytes). RESULTS: In standard-diet-fed mice at 2 h after resuscitation, transfusion with stored erythrocytes increased tissue injury more than transfusion with fresh erythrocytes. The adverse effects of transfusing stored erythrocytes were more marked in HFD-fed mice and associated with increased lactate levels and short-term mortality. Compared with fresh erythrocytes, resuscitation with stored erythrocytes was associated with a reduction in P50, increased plasma hemoglobin levels, and increased indices of inflammation and oxidative stress, effects that were exacerbated in HFD-fed mice. Inhaled nitric oxide reduced tissue injury, lactate levels, and indices of inflammation and oxidative stress and improved short-term survival in HFD-fed mice resuscitated with stored erythrocytes. CONCLUSIONS: Resuscitation with stored erythrocytes adversely impacts outcome in mice with hemorrhagic shock, an effect that is exacerbated in mice with endothelial dysfunction. Inhaled nitric oxide reduces tissue injury and improves short-term survival in HFD-fed mice resuscitated with stored erythrocytes.


Assuntos
Endotélio Vascular/fisiopatologia , Transfusão de Eritrócitos/efeitos adversos , Óxido Nítrico/administração & dosagem , Choque Hemorrágico/terapia , Administração por Inalação , Animais , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Transfusão de Eritrócitos/normas , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Choque Hemorrágico/sangue , Choque Hemorrágico/mortalidade , Taxa de Sobrevida/tendências , Fatores de Tempo , Transplante Isogênico/efeitos adversos
12.
Anesthesiology ; 116(3): 637-47, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22293717

RESUMO

BACKGROUND: During extended storage, erythrocytes undergo functional changes. These changes reduce the viability of erythrocytes leading to release of oxyhemoglobin, a potent scavenger of nitric oxide. We hypothesized that transfusion of ovine packed erythrocytes (PRBC) stored for prolonged periods would induce pulmonary vasoconstriction in lambs, and that reduced vascular nitric oxide concentrations would increase this vasoconstrictor effect. METHODS: We developed a model of autologous stored blood transfusion in lambs (n = 36). Leukoreduced blood was stored for either 2 days (fresh PRBC) or 40 days (stored PRBC). Fresh or stored PRBC were transfused into donors instrumented for awake hemodynamic measurements. Hemodynamic effects of PRBC transfusion were also studied after infusion of N-nitro-L-arginine methyl-ester (25 mg/kg) or during inhalation of nitric oxide (80 ppm). RESULTS: Cell-free hemoglobin levels were higher in the supernatant of stored PRBC than in supernatant of fresh PRBC (Mean ± SD, 148 ± 20 vs. 41 ± 13 mg/dl, respectively, P < 0.001). Pulmonary artery pressure during transfusion of stored PRBC transiently increased from 13 ± 1 to 18 ± 1 mmHg (P < 0.001) and was associated with increased plasma hemoglobin concentrations. N-nitro-L-arginine methyl-ester potentiated the increase in pulmonary arterial pressure induced by transfusing stored PRBC, whereas inhalation of nitric oxide prevented the vasoconstrictor response. CONCLUSIONS: Our results suggest that patients with reduced vascular nitric oxide levels because of endothelial dysfunction may be more susceptible to adverse effects of transfusing blood stored for prolonged periods. These patients might benefit from transfusion of fresh PRBC, when available, or inhaled nitric oxide supplementation to prevent the pulmonary hypertension associated with transfusion of stored PRBC.


Assuntos
Transfusão de Eritrócitos/efeitos adversos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/prevenção & controle , Óxido Nítrico/administração & dosagem , Administração por Inalação , Animais , Animais Recém-Nascidos , Hipertensão Pulmonar/imunologia , Carneiro Doméstico , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...